If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2-100x+49=0
a = 25; b = -100; c = +49;
Δ = b2-4ac
Δ = -1002-4·25·49
Δ = 5100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5100}=\sqrt{100*51}=\sqrt{100}*\sqrt{51}=10\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-10\sqrt{51}}{2*25}=\frac{100-10\sqrt{51}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+10\sqrt{51}}{2*25}=\frac{100+10\sqrt{51}}{50} $
| 18 = j3+ 15 | | 7/5=210/x7x=1,050x=150 | | 7t-1t-3=5t-5 | | 3r−2=10 | | 19-5=19x+5x | | 191=h-255 | | 25x^2-100x+64=0 | | 14n=378 | | -28m=504 | | t+183=527 | | 906=u+75 | | 729=27h | | 5x-10÷7=-5 | | 2x+2x+24=90 | | X/6+10=1/4-2x | | 1/16=2^3x-10 | | -12x+50=-9x-25 | | v+58=88 | | 3.3(x+4)=0 | | h+19=85 | | 47=d-6 | | 46=d-5 | | 0=25x^2-1000x-1000 | | 19+5x=44 | | 6=2(x-3)= | | 9x-6=-3(x=2)-24 | | 4x2=9x-2 | | -4a^2+15a+44=0 | | 4x2-20x=-24 | | 3a+4=2a-10+15 | | 28=−4(3r+5) | | -4a^2+15+44=0 |